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Abstract

Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals
that play a significant role in the progression of renal damage and in the onset of important comorbidities. This
condition seems to be in part related to dysfunctional mitochondria that cause an increased electron “leakage”
from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen
species (ROS).
ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of
cells and tissues.
To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food
derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional
therapies could be employed.
However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has
been only partially investigated. Additionally, for their correct utilization is extremely important to understand their
effects, to identify the correct target of intervention and to minimize adverse effects.
Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant
compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers.
Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess
their overall efficacy or toxicity.
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Background
Chronic Kidney Disese (Ckd)
During CKD, the progressive deterioration of renal function
[1] induces several biological and clinical dysfunctions in-
cluding alteration in cellular energetic metabolism, change
in nitrogen input/output, protein malnutrition, resistance
to insulin and considerable enhancement of synthesis of in-
flammation/oxidative stress mediators [2–6].
Several authors have reported that in CKD, even in the

early stage, there is an abundant production of reactive
oxygen species (ROS) [7] mainly due to an hyperactiva-
tion of the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase [8–10], elevated synthesis of oxidative
stress markers [e.g., F2-isoprostanes, malondialdehyde

(MDA), advanced oxidation protein products (AOPP)]
and release of uremic toxins. The level of all these fac-
tors is inversely correlated with the glomerular filtration
rate (GFR) [5, 11–13].
The early stages of CKD require nutritional and pharma-

cological interventions to minimize uremic symptoms and
maintain volume homeostasis (conservative therapy), while
in the final stage of renal failure these alterations may in-
duce the development of severe and life-threatening clinical
complications and renal replacement therapies (RRT:
hemodialysis and peritoneal dialysis) are necessary.
Although necessary to ensure patients’ survival,

hemodialysis (HD) and peritoneal dialysis (PD) exacerbate
oxidative stress [14, 15] by exposing blood to the contact
with low biocompatible dialytic devices or fluids. In HD,
the contact of peripheral blood mononuclear cells
(PBMCs) with plastificants and filters [16] and the micro-
bial contamination together with the release of pyrogens
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in dialysate induce ROS synthesis as part of the immune
response [17–22]. Moreover, similarly to CKD, HD pa-
tients show an increased free radical-catalyzed peroxida-
tion of arachidonoyl lipids with elevated production of
lipid peroxidation products [MDA, 4-hydroxynonenal
(HNE) and F2-isoprostanes] [23, 24]. Other markers of
oxidative stress shown to be elevated in HD include lipid
hydroperoxides, oxidized-LDL and AOPP [11, 25–30].
At the same time, plasma levels of both non-

enzymatic (e.g., vitamin C, vitamin E) [31] and enzym-
atic antioxidants [e.g., superoxide dismutase (SOD) and
catalase, glutathione peroxidase (GPx) and paraoxonase
(PON1)] are reduced in CKD and HD patients [32–35].
The above mentioned imbalance between oxidants

and antioxidants in patients with advanced renal
impairment can accelerate renal injury progression
and may contribute to the high rate of clinical
complications in both CKD patients in conservative
and dialysis treatment. Major complications include cardio-
vascular disease, atherosclerosis, amyloidosis and DNA-
Damage-Associated Malignancy [36].
Additionally, oxidative stress together with altered nutri-

tional status, inflammation and cardiovascular disease
may determine the onset and development of that condi-
tion known as “MIA syndrome” described by Stenvinkel
et al. [37].
Similarly, during peritoneal dialysis (PD) treatment,

“unphysiological” fluids characterized by high lactate and
glucose concentration, high osmolality and glucose deg-
radation products (GDPs) [38] could determine local and
systemic oxidative stress. The latter may be aggravated by
chronic inflammation, diabetes, advanced age, and loss of
antioxidants such as vitamins C and E [39, 40].
Finally, it is unquestionable that oxidative stress is an

important cofactor contributing also to immune system
deregulation [41].

Mitochondria and Ckd
Mitochondria participate in numerous cellular functions
including ion homeostasis, heme and steroid synthesis,
calcium signaling, apoptosis [42–45]. The prominent
role of this organelle is to generate energy for cellular
metabolism by the oxidative phosphorylation system
(OXPHOS).
Electrons derived from cellular metabolism reach the

mitochondria through two coenzymes, nicotinamide ad-
enine dinucleotide (NADH)- and flavin adenine di-
nucleotide (FADH2). Then they undergo a passage
throughout the electron transport chain that consists of
five protein complexes located in the inner mitochon-
drial membrane.
Electrons pass through complexes I, III and IV thanks

to a proton gradient generated by the transport of these
particles to the outer side of the inner mitochondrial

membrane. Complex V then translates energy derived
from electron transport to ATP synthesis [46] (Fig. 1).
In this process, the electron leakage from the respira-

tory chain induces the conversion of oxygen (0.4–4 %)
in superoxide radicals [47]. As a consequence mitochon-
dria are the primary source of ROS.
Recent findings emphasize the involvement of mito-

chondria in progression of chronic kidney damage [48, 49]
(Fig. 2) particularly due to a reduction in mitochondrial
DNA (mtDNA) copy number, loss of mitochondrial mem-
brane potential (Δψm), and drop of ATP production [50].
Mitochondria are also involved in apoptosis and epithelial
to mesenchymal transition of renal tubular epithelial cells
contributing to the fibrogenic process [51].
Our group has recently demonstrated that the activity

of Complex IV (a key regulator of respiratory chain ac-
tivity) is reduced in PBMC of CKD/HD patients [49].
This causes a drop in ATP production and exacerbates
oxidative stress because these dysfunctional organelles
release a great amount of ROS. Interestingly the mito-
chondrial ROS are able to activate NLRP3 inflamma-
some and thus contribute to CKD-related chronic
microinflammation [52].
This mitochondria-induced NLRP3 inflammasome acti-

vation has been also reported by other groups in animal
model of proteinuria-induced renal tubular injury [53].
We also showed [54] a deregulated mitochondrial-

related intracellular machinery in uremic patients treated
with peritoneal dialysis (PD). A group of genes encoding
for mitochondrial biogenesis (PGC-1α, NRF1 and TFAM)
and functional proteins (COX6C, COX7C, UQCRH and
MCAD) were down-regulated in PD compared to healthy
subjects.
At once, nuclear factor erythroid 2-related factor 2

(NRF-2) and one of its target gene superoxide dismut-
ase 2 (SOD2) were up-regulated in peritoneal dialysis-
treated patients in the attempt to neutralize ROS
over-production.
However, whether these mitochondrial abnormalities

represent a causative factor or an outcome of cellular in-
jury during this process remains to be investigated.

Mitocondrial-induced oxidative stress: a New therapeutic
target in Ckd
Mitochondria could be in future a valuable pharmaco-
logical target for patients with renal impairment and a
variety of agents, combined with conventional therapies
and an appropriate life style, targeting mitochondria-
derived oxidative stress, could prevent and slow-down
the progression of CKD and minimize the development
of severe systemic complications.
Nevertheless, although the anti-oxidant properties of

most of these agents are well known, their use in clinical
nephrology are only partially investigated.

Granata et al. Nutrition & Metabolism  (2015) 12:49 Page 2 of 21



At the moment, the available mitochondria-targeted
and anti-oxidant agents are (Fig. 3):

1. Endogenous and food derived antioxidants;
2. Natural plants extracts;
3. Conventional drugs with favorable antioxidant side

effects;
4. Mitochondria-targeted molecules.

Endogenous and food derived antioxidants
L-Carnitine
L-carnitine (4-N-trimethylammonium-3-hydroxybutyric
acid) mainly derives from diet (75 %) with a bioavailabil-
ity that ranges from 54-72 % and it is synthesized en-
dogenously (primarily in liver and kidney) from two
essential amino acids: lysine and methionine [55].

It mediates the transport of fatty acids across the mito-
chondrial inner membrane from the cytosol to the mito-
chondrial matrix for their β-oxidation. This leads to acetyl
coenzyme A production that, entering tricarboxylic acid
cycle, improves mitochondrial respiratory chain activity
and reduces ROS formation [56].
Additionally, L-carnitine is able to directly reduce free

radical generation by scavenging ROS and chelating iron
[57] and it may act as secondary antioxidant by increas-
ing the production/activity of antioxidant enzymes and
by inhibiting lipid peroxidation and xanthine oxidase ac-
tivity [58, 59].
As demonstrated in animal model, L-carnitine reduces

MDA content and restores glutathione (GSH) levels in
aorta, heart and kidney tissues [60].
Patients with CKD in conservative therapy have

higher plasma concentrations of L-carnitine than

Fig. 1 Oxidative Phosphorylation System (OXPHOS). Electrons derived from cellular metabolism reach complex I or complex II through NADH or
FADH2, respectively. These electrons are then transferred to coenzyme Q (ubiquinone), a carrier of electrons from complex I or II, to III. In the
latter, particles are shifted form cytochrome b to cytochrome c with a consequent transfer to Complex IV (cytochrome oxidase) where they reduce
O2. This electrons transport through mitochondrial complexes is coupled to shipment of protons in the intermembrane space. The electrochemical
gradient generated is used by Complex V for ATP synthesis. Adapted from the KEGG Oxidative phosphorylation pathway (Reference number:
00190, http://www.genome.jp/kegg-bin/show_pathway?map00190)
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healthy individuals [61–64]. In contrast, a large num-
ber of studies have reported low plasma and muscle
L-carnitine levels in CKD patients undergoing chronic
hemodialysis [65–67] correlated with dialysis vintage
[61–64, 68, 69]. This is mainly due to the efficient removal
of the compound during the treatment together with a re-
duction in L-carnitine dietary intake and endogenous syn-
thesis [65, 67, 70].
The depletion in L-carnitine is associated with import-

ant clinical problems and symptoms, most notable of
which are anemia hyporesponsive to erythropoietin ther-
apy, intradialytic hypotension, cardiomyopathy and skel-
etal muscle dysfunction manifested as generalized
fatigability [71].
Pertosa et al. [72], also, reported that 3 months supple-

mentation of L-carnitine was also able to reduce intracel-
lular levels of phosphorylated proteins and jun-N-terminal
Kinase (JNK) activity in PBMC from HD patients treated

with cellulosic membrane. This treatment caused a sig-
nificant improvement of cellular defense against chronic
inflammation and oxidative stress, most likely by modu-
lating the specific signal transduction cascade activated
by an overproduction of proinflammatory cytokines and
oxidative stress.
Therefore, in the last years, the L-Carnitine supplemen-

tation in HD has been emphasized and several nephrology
groups have started clinical research programs and trials.
However, the results of most of these studies resulted un-
convincing and conflicting. This could be due to the small
population employed, the short duration of follow-up and
the absence of a correct selection or adjustment for clin-
ical manifestations [73–78].
Based on these clinical evidences, expert consensus

groups and federal agencies have recommended L-
Carnitine not for routine use, but for dialysis patients
with specific indications. In 1999, the FDA approved

Fig. 2 Schematic representation of the mitochondrial involvement in chronic kidney disease (CKD). In this pathological condition, mitochondrial
impairment (mainly characterized by a reduction in mitochondrial biogenesis, loss of mitochondrial membrane potential, and drop of ATP
production) causes a great release of ROS that could contribute to chronic microinflammation through NLRP3 inflammasome activation. At the same
time, during CKD, nuclear factor erythroid 2-related factor 2 (NRF-2) and one of its target gene superoxide dismutase 2 (SOD2) are up-regulated by
oxidative stress, in the attempt to neutralize ROS production. Notably, this effect has been observed by our group [54] in PBMCs
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intravenous L-Carnitine for use in dialysis-related carni-
tine deficiency, as defined by low L-Carnitine levels [79].
Subsequently, expert consensus panels of the Ameri-

can Association of Kidney Patients and of the National
Kidney Foundation have recommended intravenous L-
Carnitine for treatment of erythropoietin-resistant anemia,
dialysis hypotension, cardiomiophaty and muscle weak-
ness [80]. Use of oral L-Carnitine was discouraged because
of limited bioavailability, scarcity of supportive stud-
ies, and formation of toxic metabolities via intestinal
metabolism.

Coenzyme Q10 (CoQ10)
CoQ10 is a biological element belonging to the mito-
chondrial electron transport chain that moves electrons
from complex I/II to complex III [81] endogenously syn-
thesized from tyrosine in several human tissues or intro-
duced with diet (meat, fish, nuts, and some oils) [82].

Because its chemical characteristics (high molecular
weight, strong lipophily, and weak solubility in water so-
lution) CoQ10 has poor bioavailability in humans [83].
It prevents membrane lipid peroxidation, apoptosis by

inhibiting permeability transition pore (PTP) opening
and mitochondrial membrane potential depolarization,
and it is required for the uncoupling proteins function
[84–86]. CoQ10 improves the oxygen consuming, ATP
production and mitochondrial protein synthesis [87].
Moreover, CoQ10 is capable of recycling and regener-

ating other antioxidants such as tocopherol and ascor-
bate [88, 89]. All these characteristics determine its
clinical effects. In particular, CoQ10 may exerts import-
ant cardiovascular protective properties in patients af-
fected by renal failure.
Atherosclerotic cardiovascular disease (CVD) is the

main cause of high mortality rates among patients with
advanced CKD [90]. This high incidence of cardiovascu-
lar (CV) death rate is 5–20 times higher in these

Fig. 3 Target sites of major anti-oxidants agents
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patients population compared with those with normal
renal function age and sex-matched and seems to be pri-
marily associated with non-traditional risk factors as oxi-
dative stress [91, 92].
Additionally, epicardial fat tissue (EFT), the visceral

adipose tissue surrounding the subepicardial coronary
vessels has recently been recognized as a new risk factor
for atherosclerotic heart disease in PD and HD patients
[93, 94]. EFT is a lipid-storing depot [95, 96] and se-
cretes proatherosclerotic and proinflammatory cytokines
[97–99].
Macunluoglu et al., in accordance with previous studies

[91, 100] demonstrated that Co-Q10 levels were signifi-
cantly decreased in HD patients compared to healthy con-
trols and inversely correlated with EFT thickness [101].
Authors hypothesized that increased EFT in HD pa-

tients can be another source of pro-inflammatory cyto-
kines and pro-oxidant molecules which cause the
consumption of Co-Q10 as antioxidant molecule. At the
same time, the increased oxidative stress due to dialysis
membranes, dialysate water and extracorporeal blood
circulation could cause EFT overproduction as a part of
the atherosclerotic process.
In another study it has been reported that Co-Q10

supplementation for 6 months reduces oxidative stress
in HD patients but it was unclear whether this benefit
would be translated into good clinical outcomes [100].
In an animal model Ishikawa et al. demonstrated that

heminephrectomized rats fed with a CoQ10-supplemented
diet showed lower levels of ROS and better renal function
[102]. However, no clinical data strongly support this
finding.
Moreover in mouse models of type 2 diabetes, CoQ10

introduction reduced oxygen consumption, mitochon-
drial fragmentation glomerular hyperfiltration and pro-
teinuria [103, 104].
However, although these encouraging results, CoQ10

effects on CKD remain to be determined by additional
in vivo studies and clinical trials.

Alpha-lipoic acid (ALA)
ALA is commonly found in vegetables (e.g., spinach,
broccoli, tomato) and meat, but it can be also enzymati-
cally synthesized by octanoic acid and cysteine in human
mitochondria.
Because of its amphipathic structure is ubiquitously dis-

tributed in several cellular structures and in mitochondria
where it acts as a cofactor for pyruvate dehydrogenase and
α-keto-glutarate dehydrogenase complexes.
Its neutralizes several free radicals [105], reduces the

oxidized form of vitamin C and GSH, prevents the syn-
thesis of free radicals by forming stable complex with
the catalyzers Mn2+, Cu2+, and Zn2+ and chelating Fe2+

[106] and limits the inflammation through the inhibition

of NFkB [107]. It is an inducer of NRF2-mediated anti-
oxidant gene expression and activates PPAR-α and –ɣ
regulating the expression of several enzymes regulators
of glucose and lipid metabolism [108].
Kim et al. reported, also, that ALA decreases vascular

calcification by reducing vascular smooth muscle cells
(VSMC) apoptosis by preserving anti-oxidant mitochon-
drial functions and activating Akt [109].
All these biochemical effects confer to this cofactor

important antioxidant properties [110] that can be
exploited in CKD patients to slow down the progression
of renal damage and to control the onset of severe car-
diovascular complications.
However, only few papers have described the clinical

impact of ALA supplementation in CKD with contrast-
ing results.
In a recent paper, HD patients receiving a daily dose

of ALA (600 mg) for 8 weeks reported only a reduction
in C-reactive protein (CRP) level, which is a risk factor
for cardiovascular disease in this patients’ population. It
had no effects on MDA, total antioxidant status, total
cholesterol, triglyceride, high-density lipoprotein choles-
terol, and low-density lipoprotein cholesterol [111].
Contrarily, Chang and colleagues did not observe sig-

nificant results in CRP levels by 600 mg of ALA supple-
mentation for 8 weeks in diabetic HD patients [112].
Similarly other two clinical trials, examining the

anti-oxidant effects of ALA combined with mixed to-
copherols in patients with CKD in both conservative
and dialysis treatment, failed to give significant posi-
tive results [113, 114].
More recently, lipoic acid demonstrated positive effects

in the treatment of diabetic nephropathy [115–118]. In
particular, it was able to prevent renal insufficiency, glom-
erular mesangial matrix expansion, and glomerulosclerosis
by restoring glutathione and reducing malondialdehyde
levels [119].
We believe that such differences in outcomes might be

primarily attributed to differences in genetic characteris-
tics of patients and, in most studies, by limitations such
as blind administration of study interventions, small
sample size, and short period of follow-up. To avoid
these strong biases, nephrological research community
should undertake well organized multicenter inter-
national clinical trials.

Omega 3 polyunsaturated fatty acids (Omega-3 PUFAs)
Omega-3 are a family of polyunsaturated fatty acids
(PUFAs) (including eicosapentanoic acid (EPA), docosa-
pentaenoic acid (DPA) and docosahexanoic acid (DHA))
that play a major role in modulating the structure and
function of cell and organelle membranes [120, 121]. A
major source of these substances is the fish (mainly fish
oil) [122].
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They exert anti-inflammatory functions by reducing the
expression/production of adhesion molecules, chemotac-
tic factors, pro-inflammatory cytokines (TNF-a, IL-1b and
IL-6) [123–125]. These effects are mainly due to the sup-
pression of the IkB phosphorylation with a subsequent
NFkB inactivation [126].
Moreover, being precursor of prostaglandins (I3 and

E3), prostacyclins, thromboxanes A3 and leucotrienes
B5, they have anti-thrombotic effects [127–129].
They also participate in membrane fluidity, ion chan-

nels transport (sodium, potassium and calcium) and
mitochondrial biogenesis [130–132].
Additionally, they are also known to have anti-

oxidant properties. They enhance endogenous antioxi-
dant defense systems such as GSH through increased ac-
tivity of ɣ-glutamyl-cysteinyl ligase, glutathione reductase
and glutathione S-transferase [133]. DHA and EPA are in-
corporated into the phospholipid bilayer of cells where
they displace arachidonic acid and reduce the ROS pro-
duction by COX2 and xanthine oxidase pro-oxidant path-
way [134].
From a clinical point of view, Omega-3 supplementation

may have beneficial effects on lipid profile [135–137],
blood pressure maintenance and redox status [138–141],
together with important cardioprotective properties
[142–144].
Additionally, some studies reported that fish oil ther-

apy significantly reduced diastolic (7 to 15 mmHg) and/
or systolic blood pressure (16 to 30 mmHg) [145–147]
in dialysis patients. However contrasting results have
been published [148–150].
Several evidences suggest that thiobarbituric acid re-

active substances (TBARS) level are reduced and SOD,
glutathione peroxidase and catalase (CAT) activities in-
creased after initiating treatment with Omega-3 [151].
Interestingly it has been demonstrated their ability to re-
duce 5- lipoxygenase activity, an enzyme responsible for
apoptosis in PBMC of end stage renal disease patients
[152, 153].
These findings were also confirmed in a study per-

formed in a rat model of CKD supplemented with
omega-3 for 12 weeks showed downregulation of prooxi-
dant, proinflammatory and profibrotic pathways [154].
The long nephrology story of Omega-3 and these re-

cently published studies in HD patients raised new
hopes and, according to their authors, should promote
randomized clinical trials with fish oil supplementation
to improve cardiovascular outcomes in this setting.
However, as clearly suggested by Teta [155] the lessons

learned from studies in non-dialysis settings, coupled
with the consistent history of negative trials in the dialy-
sis population, should invite caution. Further steps may
be required before investment of resources in a random-
ized clinical trial with Omega-3 in this population.

Additional epidemiological evidence from larger samples
of HD patients should be undertaken and interventional
trials should be performed to define the best dose for each
patient to reach sufficient blood levels of omega-3 fatty
and to avoid complications (e.g., risk of bleeding especially
in patients taking aspirin, clopidogrel, and anticoagulants,
which are prevalent in CKD and cardiovascular disease
population).

Vitamin E
Vitamin E indicates a group of 8 structurally related com-
pounds (comprising α, β, ɣ, δ tocopherol and the corre-
sponding tocotrienols) [156]. However, α-tocopherol
having higher bioavailability in vivo, has been more exten-
sively studied.
Vitamin E has been shown to regulate superoxide gener-

ation in human neutrophils and monocytes and mitochon-
drial ROS in skeletal muscle and liver [157–159]. This
protective effect on oxidative stress attenuates the onset
and development of several cardiovascular disease, aging
and other chronic/degenerative diseases (including CKD).
Additionally, this vitamin has also been shown to me-

diate the activation and gene expression of protein kin-
ase C [160–162], transcription factor activator protein-1
[160, 163], transforming growth factor beta-1 [164],
NFkB and related transcription factors [160, 165]. These
factors are known to play important roles in mediating a
number of pathophysiologic events including platelet ad-
hesion and aggression and mural thrombus [166, 167],
vascular smooth muscle cell proliferation [160, 168],
apotosis [169] and glomerulosclerosis [170].
Therefore, dietary vitamin E intake by regulating the

above mentioned biological/biochemical pathways and
redox-sensitive biologic machineries could prevent or
delay the progression of chronic systemic alterations (in-
cluding chronic kidney damages) [159]. These protective
effects have been also described in dialysis treated CKD
patients [171, 172].
The SPACE study tested the cardiovascular preventive ef-

fects of vitamin E supplementation (administered at high-
dosage, 800 IU/day) in HD patients with previous cardio-
vascular events. During the long follow-up (519 days) they
found 40 % reduction in both composite cardiovascular-
events and myocardial infarction (70 %) [173].
However, the beneficial effects of this agent in patients

with renal damage is largely debated since a meta-
analysis showed an increased mortality for all causes in
patients affected by CKD treated with a daily dose >
400 IU [174].
Vitamin E seems also useful when bonded to dialysis

membranes. In fact, in several studies oxidative stress
and inflammatory markers were reduced together with
an improvement in hemoglobin level and a reduction in
Erythropoiesis-Stimulating Agents (ESA) requirement by
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long-term use of dialysis filters coated with vitamin E
[175–179].
It is unquestionable that the results of the above

mentioned studies suggest that vitamin E supplemen-
tation may be an effective accessory therapy to com-
bat oxidative stress-lowering lipid peroxidation in
CKD and HD patients. However, the correct clinical
use of this vitamin in nephrology need to be better
clarified.

Vitamin C
Vitamin C (ascorbic acid) is a water-soluble antioxi-
dant found in some vegetables and fruits and distrib-
uted both in intra- and extracellular fluids. It
scavenges ROS and reactive nitrogen species by
forming semidehydroascorbic acid and may thereby
prevent oxidative damage to important biological
macromolecules [180].
It has been demonstrated that patients with CKD

show a reduction in both the total Vitamin C concen-
tration and the active form (ascorbate) probably caused
by a diminished intake of fruits and vegetables in order
to avoid iperkaliemia and the loss during HD treatment
[181–183]. Another possible explanation could be an
impairment of enzymatic or non-enzymatic recycling of
ascorbate from dehydroascorbate (the oxidized form of
vitamin C), since the recycling is largely GSH
dependent [184] and dialysis patients have a marked
GSH deficiency [182].
To avoid this condition, currently, oral ascorbate/week

(1–1.5 g), or parenteral ascorbate/dialysis session
(300 mg), are recommended to compensate for subclin-
ical deficiency, although evidence for such recommenda-
tions is scarce [183].
In a cross-over study, patients treated for three months

with 200 mg/day vitamin C showed decreased CRP level
and augmented prealbumin concentration [185].
Additionally, 2 months treatment with intravenous vita-

min C in dialyzed patients using vitamin E-coated mem-
branes significantly reduced oxidative stress, avoided the
reduction of erythrocyte reductases activity and decreased
the level of pro-inflammatory cytokines [179].
Ascorbic acid has also been used to improve response to

ESA [186] through an increase in hemoglobin concentra-
tion and transferrin saturation. Use of ascorbic acid may
enhance iron availability through 2 mechanisms: as a redu-
cing agent that can mobilize iron from its storage sites and
through its role of integration of iron into the heme moiety
[187, 188].
Vitamin C has, also, anti-apoptotic effects by main-

taining the mitochondrial membrane potential and pro-
tecting mtDNA from oxidant insults [189–192].
Although interesting, the use of this agent remains un-

usual in nephrology.

Plant extracts with antioxidant properties
Nigella sativa
Nigella sativa (or black cumin) is a herbaceous plant grow-
ing particularly in Mediterrean area and in India [193]
largely employed for culinary and medicinal purposes
(treatment of pulmonary disorders, cardiovascular diseases,
fever and influenza) [194]. Biological effects of Nigella sativa
seeds seem to be related to their oil components.
Its seed oil contains an elevated quantity of polyphe-

nols and tocopherols [195]. Thymoquinone (TQ) and its
derivatives (dithymoquinone, thymohydroquinone, and
thymol) [196] are the most abundant.
Their quinine structure confers to these molecules a

significant antioxidant activity as scavenger of super-
oxide, hydroxyl radical and singlet molecular oxygen
[197–199]. Additionally, TQ has anti-inflammatory
property by inhibiting ecoisanoid, thromboxane B2 and
leukotrienes B4 [200].
In medicine, TQ and its derivatives are tested as

mitochondria-targeted antioxidants [201] and Nigella
Sativa has been employed as preventive agent against
doxorubicin (DOX), gentamicin, vancomycin and cis-
platin nephro-toxicity [202, 203] by increasing glutathi-
one peroxidase activity [204, 205] and against nephrotic
syndrome-associated clinical complications [206].
As demonstrated by Badary et al. in a DOX-induced

hyperlipidemic nephropathy rat model, treatment with TQ
produced a significant reduction of nephritic syndrome-
related clinical signs and complications (massive albumin-
uria, proteinuria, hyperlipidemia, hypoalbuminemia and
hypoproteinemia). These signs resemble histologically and
clinically focal and segmental glomerulosclerosis, one of the
cause of CKD [206, 207]. The possible molecular
mechanism for these positive effects could be a re-
duction of oxidative stress. In fact, although the exact
molecular mechanism mediating the DOX-induced
nephropathy remains unknown, it is believed that the
toxicity may be mediated by ROS which cause glom-
erular injury and increased glomerular capillary per-
meability [208].
Cellular models have, also, clearly demonstrated that

Nigella Sativa may have dose-related antiproliferative
and cytotoxic effects [209–211].
According to these few published data, it is plausible

that this agent may represent in future a new valid
therapeutic tool in clinical nephrology, but at the mo-
ment, the absence of strong clinical evidences suggests a
prudence in its employment in the treatment of patients
with chronic renal disease.

Curcumin
Curcuma is a traditional Asian spice derived from the
homonymous rhizome of the ginger family (Zingiberacee).
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It has been used in traditional Asian medicine (Ayurveda,
Chinese, Arabian) for centuries. Recently a great number of
studies have demonstrated that curcumin, the mean curcu-
minoid contained in Curcuma longa, exhibits high anti-
inflammatory and antibacterial properties [212–216].
Additionally, this agent can modulate several enzymes,

cytokines, transcription factors, growth factors, recep-
tors, micro RNA (miRNA) [217–219] that determine its
dual antioxidant activity [220]. In detail, Curcumin is
able to directly scavenge superoxide anion, hydroxyl rad-
icals, H2O2, singlet oxygen, nitric oxide, peroxynitrite
[221–225] and peroxyl radicals probably by means of
phenolic groups in its molecular structure [222].
Curcumin has also indirect antioxidant ability mediated

by the induction of the expression of cytoprotective pro-
teins such as SOD, CAT [218], glutathione reductase (GR),
glutathione peroxidase (GPx) [226], heme oxygenase 1
(HO-1) [227], glutathione-S-transferase (GST), NAD(P)H:
quinone oxidoreductase 1 [228] and γ-glutamylcysteine lig-
ase [229].
The potential therapeutic effects of Curcumin have

been evaluated in several animal models of renal dis-
eases [230–238] and clinical trials for cancer, Alzhei-
mer’s disease, ulcerative colitis, diabetes [217, 239].
Khajehdehi et al. have shown that, oral supplementa-

tion of turmeric/curcumin (one capsule with each meal
containing 500 mg turmeric, of which 22.1 mg was the
active ingredient curcumin-3 capsules daily for 2 months)
has strong protective renal effects (reduction of protein-
uria and inflammatory background) in patients with
overt type-2 diabetic nephropathy together with a de-
crease in systolic blood pressure in patients suffering
from relapsing or refractory lupus nephritis indicating a
direct podocyte effect and making it a promising remedy
for chronic glomerulonephritis and CKD [240, 241].
Finally, curcumin was able to induce a cardiovascular

protection against CKD-associated cardiac remodeling,
in part due to a preservation of the mitochondrial func-
tion [242].
However, at the moment, all these promising clinical

evidences are not so sufficient to start a large utilization
of this compound in our patients, but in future we be-
lieve that Curcumin could be employed in selected and
well defined patients affected by glomerular pathologies
and chronic renal impairment.

Quercetin
Quercetin (IUPAC nomenclature: 3, 3′,4′,5,7-pentahy-
droxyflavanone) is a flavonol presents in several aliments
(e.g., onions, shallots, apples, berries, grapes, cappers,
brassica vegetables, tea, red wine) [243] with strong anti-
oxidant properties including scavenging of free radicals, in-
hibition of xanthine oxidase and decrement of lipid peroxi-
dation [244–247]. Additionally, it has anti-inflammatory

effects by suppressing the MAPK and NFkB signal trans-
duction pathways [248], by modulating NOS and COX-2
synthesis and down-regulating CRP [249–251].
The renoprotective effect of this substance has been

assessed in several models of toxic injury [252–254] and
Shoskes et al. have shown that quercetin prevent renal
injury in rodent models of ischemia/reperfusion and ur-
eteral obstruction [255–257].
Interestingly the immune modulator effect of quer-

cetin seems to be mediated also through two mecha-
nisms: inhibition of the lymphocytes proliferation by
arresting cell cycle in G1/S phase [258] and down-
regulation of IL-2 synthesis [259, 260]. These findings
led to an open label phase I study in renal transplant re-
cipients taking Oxy-Q which contains 400 mg of curcu-
min and 100 mg of quercetin [261]. In patients with
poor renal function serum creatinine improved and in
patients with delayed graft function, there was an en-
hancement in renal function.
Subsequently the same authors performed a random-

ized placebo controlled study with Oxy-Q started after
renal transplantation and taken for 1 month. Patients
were randomized into three groups: control (placebo),
low dose (one capsule, one placebo) and high dose (two
capsules). The high dose bioflavonoid group had the
lowest serum creatinine values, the least neurotoxicity
and an acute rejection rate at 6 months (including sub-
clinical rejection) of 0 % and the higher early graft func-
tion. Considering that urinary HO-1 was higher in
bioflavonoid groups, authors suggested that these posi-
tive effects could be possible thanks to this enzyme in-
duction [262]. HO-1 is a biological element able to
reduce ischemia reperfusion damage and alloimmunity
in renal transplant recipients [263]. However, authors
conclude that these results were completely observa-
tional and the mechanism of the increased urinary HO-1
activity deserves further study [262].
Moreover, it has been suggested that Quercetin may also

prevent tissue oxidative damages and attenuate renal dam-
age in streptozotocin-induced diabetic rats [264–266].
As concern mitochondria Davis et al. reported that sup-

plementation of quercetin for 7 days in mice induced
PGC-1α and Sirtuin 1 (SIRT1) mRNA up-regulation and
enhanced mtDNA and cytochrome c concentration [267].
Quercetin inhibits complex I ability to generate O2

− [268].
It is also used as medication to treat cancer, cardio-

vascular diseases, systemic inflammation and gastro-
intestinal pathologies [269].

Resveratrol
Resveratrol (3,5,4′-trihydroxystilbene) is a natural phe-
nol, contained in red wine and plants such as grapes,
peanuts and berries [270]. It has antioxidant, anti-
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inflammatory, anti-mutagenic and anticancer properties
[271–274].
This phytochemical exerts antioxidant effect by scav-

enging ROS directly and inducing the expression of sev-
eral antioxidant enzymes such as SOD, CAT through
NRF-2 [275].
Resveratrol activates the axis AMPK/SIRT-1/PGC-1α

[276], and attenuates aldosterone-induced mitochondrial
dysfunction and podocyte injury [277].
Resveratrol inhibited both 5-lipooxygenase (LOX) and

cyclooxygenase (COX) activities resulting in a reduced
accumulation of inflammatory mediators [278].
Thanks to its antioxidant mechanisms and influencing

MAPK and TGF-β1/Smad3 pathways, Resveratrol pre-
vents epithelial to mesenchymal transition and renal fi-
brosis [279–284].
It has also been shown that this phenol may antagonize

acute kidney injury due to cisplatin, ischemia-reperfusion
and sepsis in animal models [285–287].
Unfortunately, resveratrol has poor bioavailability

making difficult to translate the aforementioned in vitro
findings into clinical trials [288]. At the moment several
clinical trials on resveratrol are ongoing involving several
metabolic and inflammatory systemic diseases.

Green tea polyphenols
The major polyphenols present in green tea are epigallo-
catechin 3-O-gallate, epicatechin 3-O-gallate, epigallocate-
chin and epicatechin. Beneficial actions of catechins are
mostly due to the antioxidant properties, to the ability to
chelate metal ions such as copper (II) and iron (III) and to
form stable semiquinone free radicals [289–293]. The
epigallocatechin-3-O-gallate (EGCG) is the most abun-
dant and most active in green tea [294].
Several mechanisms have been linked to the anti-

inflammatory property of EGCG such as: a) Inhibition of
NFkB [295] and b) activation of AMPK that inhibit the
production of several proinflammatory mediators includ-
ing TNF-α, IL-1β, IL-6, monocyte chemoattractant
protein-1, inducible nitric oxide synthase (iNOS) and
cyclooxygenase-2 with LPS stimulation [296–298]. More
recently Qin et al. have also reported a direct interaction
between EGCG and chemokines with a consequent limi-
tation of their biological effects [299].
EGCG prevented the induction of vascular adhesion

molecule-1 by TNF α and IL-1, which subsequently re-
duced monocyte adhesion [300].
In rats subjected to unilateral ureteral obstruction,

EGCG administration caused up-regulation and nuclear
translocation of NRF2 with consequent enhancement of
antioxidant enzymes such as glutathione peroxidase,
glutathione S-transferase, γ-GCS and HO-1 [301].
At the same time EGCG alleviates glomerular and

tubular injury and attenuates renal interstitial fibrosis

through TGF-β/Smad signaling pathway inhibition and
NFkB upregulation [302, 303].
In Wistar rats subjected to ischemia-reperfusion renal

damage together with LPS injection, the administration of
EGCG reduces the activity of myeloperoxidase and pro-
tects kidney from peroxynitrite-induced damage [304].
Green tea polyphenols (daily dose, 400 mg) adminis-

tered for 6 months to 50 patients on dialysis decreased
the blood levels of methylguanidine [305] an uremic
toxin that accumulates with the progression of renal fail-
ure. Furthermore, the same authors reported beneficial
effects on renal function with green tea polyphenols ad-
ministration to nephrectomized rats [306].
Also during diabetic nephropathy, EGCG leads to im-

provement of proteinuria, reduction of advanced glyco-
sylation end products (AGE), hyperglycemia, lipid
peroxidation thanks to its antioxidant activity and inhib-
ition of NFkB [307].
Moreover, these substances may protect kidneys by

several drugs such as ciclosporin, cisplatin, gentamicin
through their anti-oxidative properties [308–310].

Conventional drugs with antioxidant “side
effects”
N-acetyl cysteine (NAC)
N-acetylcysteine is a modified form of the amino acid
cysteine, in which the nitrogen atom of the amino group
is attached to an acetyl group. It has received attention
because of its antioxidant capacity primarily due to its
ability to drive the synthesis of the powerful antioxidant
GSH [311]. Moreover NAC reacts fast and directly with
radical ·OH, radical ·NO2, CO3·- [312].
Upon deacetylation, NAC becomes L-cysteine, entering

cells where it may serve as a precursor for GSH synthesis.
In kidney subjected to ischemia/reperfusion injury GSH
level is reduced and can be restored by NAC [313].
In cultured human proximal tubular epithelial cells,

NAC reduced lipid peroxidation and maintained the
mitochondrial membrane potential, thereby preventing
apoptosis following H2O2 administration [314].
NAC has an important vasodilatory effect maybe me-

diated by its ability to stabilize nitric oxide or by inhibit-
ing angiotensin-converting enzyme [315, 316].
Since vasoconstriction is believed to be a pathogenic

factor in contrast-induced nephropathy, vasodilatory ef-
fects may prove helpful and NAC has been the subject
of numerous trials with mixed results [317–320]. The
great difference in the clinical trials is the degree of risk
of the patients involved. It seems to have positive effect
on patients with renal dysfunction [321]. Another im-
portant point is the route of administration [322]. Given
into account that NAC has an indirect effect, by acting
on GSH metabolism, early dosing may be necessary
[323]. Overall a positive effect of NAC on contrast-
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induced nephropathy is too far to come but since it is
safe and well tolerated, intravenous NAC as a prophylac-
tic agent for prevention of contrast-induced nephropathy
is adequate [323].
Additionally, even if controversial, some studies

showed beneficial effects of NAC supplementation in
both PD and HD patients, such as increment in GFR,
urine volume, reduction of IL-6 and MDA level and
composite cardiovascular endpoints [324–328].
Interestingly, Tepel et al. conducted a prospective, ran-

domized, placebo-controlled trial in 134 HD patients
randomly assigned either to receive acetylcysteine
(600 mg BID) or placebo. The primary end point was a
composite variable consisting of cardiac events including
fatal and nonfatal myocardial infarction, cardiovascular
disease death, need for coronary angioplasty or coronary
bypass surgery, ischemic stroke, peripheral vascular dis-
ease with amputation, or need for angioplasty. Second-
ary end points included each of the component
outcomes, total mortality, and cardiovascular mortality.
In the acetylcysteine group 28 % patients had a primary
end point while 47 % of the control group (p = 0.03). No
significant differences in secondary end points or total
mortality were detected [327].
Contrarily, several studies reported no effect of NAC

supplementation neither on surrogate markers of cardio-
vascular injury nor on kidney function in patients with
CKD [329–331].
The exact reasons for these negative results are not

completely known, but they could be due to the rela-
tively short treatment period and to a not standardized
treatment dose. In fact, other authors reported that
NAC has some value as an antioxidant, but only in cer-
tain conditions [332]. Moreover, at doses as low as
1200 mg daily, NAC may even exert pro-oxidative proper-
ties in people with normal intracellular GSH level [333].
However, these studies underline the necessity to undergo
large multicenter trails to better define the therapeutic ef-
fect of NAC supplementation in CKD patients.

Carvedilol and captopril
Besides conventional use of carvedilol and captopril in
the treatment of cardiovascular disease, these drugs ex-
plicate a potent antioxidant and anti-apoptotic activities.
Carvedilol is a nonselective beta-blocker, antagonizing

β-1 and β-2 receptors with antioxidant properties attrib-
uted to the presence of a carbazole moiety in the mol-
ecule [334–336].
Several studies have reported protective effect of car-

vedilol against ischemia/reperfusion and drugs-induced
nephrotoxicity [337–341].
Captopril is an angiotensin-converting enzyme (ACE)

inhibitors with antioxidant properties due to a thiol
group in its structure that has both the ability to

scavenge free radical directly and to enhance antioxidant
enzyme level [342, 343].
Experiments performed on a mouse model of acute kid-

ney injury induced by ischemia/reperfusion demonstrated
that captopril (an anti-hypertensive drug) determined im-
portant renal positive effects by inhibiting angiotensin-II
activity and reducing parenchymal inflammation.
However, in the last phase of reperfusion, captopril

was no longer effective [344].

Allopurinol
Allopurinol is a xanthine oxidase (XO) inhibitor used
worldwide to treat hyperuricemia. XO is an enzyme that
catalyzes the conversion of hypoxanthine to xanthine and
finally to uric acid together with the production of ROS.
Uric acid is increased in CKD patients and is emerging

as a potentially modifiable risk factor for CKD. The in-
crement in uric acid results in oxidative stress and endo-
thelial dysfunction with consequent development of
systemic and glomerular hypertension in association
with elevated renal vascular resistance and reduced renal
blood flow [345–347]. Hyperuricemia was also able to
induce an epithelial-to-mesenchymal transition, with dir-
ect effects on the tubular cell population [348].
There are several mechanisms mediating these ef-

fects: uric acid stimulates vascular smooth muscle cell
proliferation with the activation of mitogen-activated
protein kinases (MAPK) [349, 350], growth factors
(PDGF), chemokines (monocyte chemoattractant protein-
1 [MCP-1]), and inflammatory enzymes (COX-2) [351].
On endothelial cells, uric acid activates the renin-
angiotensin system with augmented apoptosis and vascu-
lar dysfunction [352, 353].
Moreover long-term hyperuricemia induces hyperten-

sion, renal vasoconstriction, tubular damage, renal cor-
tex oxidative stress, and mitochondrial impairment
shown by oxidative phosphorylation uncoupling, re-
duced ATP renal content and lower mitochondrial DNA
[354]. Treatment with allopurinol prevented these alter-
ations [355].
In humans, several trials have reported beneficial effect

of treatment with allopurinol on progression of kidney
disease and cardiovascular events [356–361].

Mitochondria-targeted molecules
Although interesting, the conventional antioxidants are
still far from a practical clinical employment. In fact, a
great limitation of these antioxidants is their inability to
reach in vivo an adequate mitochondrial concentration
[362]. Therefore, in the last years, a great number of re-
search strategies have been developed to minimize this
condition.
Firstly, most of these molecules were synthesized by

conjugating well known antioxidants with the lypophylic
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triphenylphosphonium (TPP) cation that enables such
compounds to move rapidly through biological mem-
branes and, because of its positive charge, to drive them
inside mitochondria [363].
The first produced mitochondria-targeted antioxidant

was MitoE, which comprises the α-tocopherol moiety of
vitamin E conjugated to TPP by a two carbon chain
[364]. MitoE is taken up rapidly by mitochondria making
this molecule more effective than the untargeted α-
tocopherol to prevent lipid peroxidation.
With the same research and technical approach it has

been synthetized MitoQ, a quinone moiety linked to
TPP by a 10-carbon alkyl chain [365–367]. MitoQ accu-
mulation within mitochondria is driven by the mem-
brane potential and it is absorbed to the matrix surface
of the inner membrane where it exerts its protective ef-
fects against lipid peroxidation [366].
In animal models, MitoQ has been employed in sev-

eral studies aimed to verify its protective effects against
diseases involving mitochondrial oxidative damage (e.g.,
cardiac ischemia/reperfusion injury [368], endothelial
damage induced by hypertension [369]).
MitoQ added to the cold storage fluid used to preserve

the organ before kidney transplantation, prevented mito-
chondrial dysfunction, improved cell viability and renal
morphology [370]. Likewise mitoQ intravenously admin-
istered to mice 15 min prior to occlude the renal vessels
exerts protective effects on renal function and against
oxidative damage [371, 372].
Also in a mouse model of diabetic nephropathy this com-

pound demonstrated an important anti-fibrotic activity and
a defensive effect against chronic glomerular damage [373].
From a clinical point of view, MitoQ (generally admin-

istered at oral dosing of 1 mg/kg) has undergone phase I
and II clinical trials [374, 375].
Another interesting mitochondria-targeted molecule is

MitoSOD, designed by attaching TPP to the pyridine ring
of M40403 (a non-peptidyl mimetic of MnSOD). This
agent accumulates into mitochondria and it protects
against oxidative damage induced by O2

− [376, 377]. At
our knowledge, no clinical trials using this molecule are
ongoing.
Mito-TEMPO, then, a nitroxide linked to TPP, with

similar effects to MitoSOD, has positive effects in
hypertension-related vascular injury by reducing the O2

-

and increasing the bioavailability of nitric oxide with
subsequent endothelial-dependent relaxation [378].
In addition, MitoTempo (10 mg/kg) given at 6 h post

cecal ligation and puncture (CLP) in a murine model of
sepsis demonstrated reversed mitochondrial impairment
together with an improvement in renal microcirculation
and glomerular filtration rate [379].
In order to ameliorate the mitochondrial up-take of

targeted molecules, in the last years, researchers are

introducing new agents such as Szeto-Schiller (SS) pep-
tides, promising molecules constituted by alternating
aromatic residues and basic amino acids that have some
features rendering them potent antioxidants: (1) they are
taken up into cells in an energy-independent nonsatur-
able manner, (2) have a sequence motif that targets them
to mitochondria, (3) are very potent in reducing intracel-
lular ROS and preventing cell death at very low concen-
tration [380–382] and (4) their uptake is not dependent
on mitochondrial membrane potential. The antioxidant
ability seems due to a tyrosine or 2,6-dimethyl-L-tyro-
sine (Dmt) residues and to their position in the sequence
[381, 383].
These peptides have been tested in several animal

models of oxidative damage such as myocardial infarction,
ischemia reperfusion, amyotrophic lateral sclerosis, and
pancreatic islet cell transplantation [384–388]. In a rat
model of CKD performed by unilateral ureteral ob-
struction, SS-31 (1 or 3 mg/kg) given 1 day before and
throughout the 14 days of obstruction, significantly de-
creased tubular apoptosis, macrophage infiltration, fibrosis
and it increased tubular proliferation [389].
In a rat model of ischemia/reperfusion SS-31 was

administered subcutaneously 30 min before a 30 or
45 min long bilateral occlusion of renal blood flow, at
the onset of reperfusion and 2 h later. It preserved renal
tubular architecture, reduced apoptosis and maintained
mitochondrial integrity and function with full recovery of
ATP content after reperfusion. As a consequence, oxida-
tive stress and inflammation were reduced and tubular cell
regeneration was accelerated [390].
Interestingly, Liu et al. have demonstrated protective

properties of SS-31 during ischemia/reperfusion also in
capillary endothelial cells. As reported in tubular epithelial
cells, SS-31 protects mitochondrial structure and prevents
endothelial cell swelling, cell detachment and cell death
[391]. The mechanism seems to be mediated by an inter-
action between SS-31 and cardiolipin, an anionic
phospholipid expressed in the inner mitochondrial mem-
brane. This interaction prevents cardiolipin peroxida-
tion by inhibiting cytocrome c peroxidase activity [392].
SS-31 is now under evaluation in a multinational clinical

trial for reperfusion injury in patients with acute coronary
events (NCT01572909), and in a Phase 2 trial to assess the
effectiveness on improving renal function after angioplasty
for severe renal artery stenosis (NCT01755858).
Then, on the basis of SS-31, more recently Cerrato and

coworkers have synthesized novel peptides called mito-
chondrial cell-penetrating peptides (mt-CPPs). CPP are
short, nontoxic peptides with amphypathic and cationic
properties able to cross the cellular membrane [393]. Mt-
CCP-1 is not toxic even at high concentration, did not per-
turb Δψm and, interestingly, its amount into the cells is
higher than SS-31 [393].
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There are numerous CPPs available with different se-
quence and physicochemical properties that can be con-
jugated with different cargoes (small drugs, peptide or
larger cargoes such as oligonucleotide, proteins and plas-
mids) very useful to deliver drugs into the target of
interest [394].

Conclusions
Emerging evidences suggest that dysfunctional mito-
chondria have a primary role in the development of
CKD as well as in comorbidities related to CKD and
underline their role as new therapeutic targets.
A variety of agents (including endogenous and food de-

rived antioxidants, natural plants extracts, mitochondria-
targeted molecules) combined with conventional therapies
and an appropriate life style could help clinicians to reach
this objective. However, for a correct utilization of these
agents is extremely important to understand their effects
and to identify the correct target of interventions. In fact,
although the beneficial effects of these compounds are
well known, large clinical trials are needed to provide
more definitive information on their efficacy in CKD.
Finally, future strategies (including pharmacogenomics

[395]) should be undertaken to identify target patients po-
tentially responsive to mitochondria-related anti-oxidant
treatments.
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